Task 3.5 – First-Principles Calculations of Existing and Novel Electrode and Solid Electrolyte Materials

PI/Co-PI: G. Ceder (LBNL)
Objective:

 Determine the design principles needed to create solid state electrolytes with high Li-ion conductivity for solid-state batteries, while also achieving stability against common Li-ion cathodes and Li metal anodes

Impact:

- Understanding of factors that control Li-ion motion in crystalline and amorphous solids
- Strategies to create stable interfaces against Li
- Long Cycle-life solid state batteries

Accomplishments:

- This is a new direction for this project. We have performed initial calibration and testing of methods to predict phase stability and conductivity in Li-P-S sulfide electrolytes
- Methods to predict interfacial reactivity
- Initial phase diagram of Li-P-S

Calculated Phase Diagram of Li-S-P

FY19 Milestones:

- Q1. Li₂S-P₂S₅ phase diagram for solid state electrolytes: solid phases correctly modeled
- Q2. Amorphous phase structure modeled correctly in Li-P-S
- Q3. Model Li-ion transport in amorphous Li-P-S
- Q4: understanding on which structural and compositional features make LPS an excellent ionic conductor

FY19 Deliverables: Study on Li-ion transport in Li-P-S systems. Papers and Presentations **Funding:**

- FY19: 400K